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Abstract

This paper solves a specialized regression prob-
lem to obtain sampling probabilities for records
in databases. The goal is to sample a small set of
records over which evaluating aggregate queries
can be done both efficiently and accurately. We
provide a principled and provable solution for
this problem; it is parameterless and requires no
data insights. Unlike standard regression prob-
lems, the loss is inversely proportional to the
regressed-to values. Moreover, a cost zero so-
lution always exists and can only be excluded by
hard budget constraints. A unique form of reg-
ularization is also needed. We provide an effi-
cient and simple regularized Empirical Risk Min-
imization (ERM) algorithm along with a theoret-
ical generalization result. Our extensive exper-
imental results significantly improve over both
uniform sampling and standard stratified sam-
pling which are de-facto the industry standards.

1. Introduction

Given a database of n records 1,2, ..., n we define the re-
sult y of an aggregate query g to be y = >, ¢;. Here,
q; is the scalar result of evaluating query ¢ on record i.'
For example, consider a database containing user actions
on a popular site such as the Yahoo homepage. Here, each
record corresponds to a single user and contains his/her past
actions on the site. The value ¢; can be the number of times
user ¢ read a full news story if they are New York based and

'For notational brevity, the index 4 ranges over 1,2, . . .
less otherwise specified.
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¢; = 0 otherwise. The result y = ). ¢; is the number of
articles read by Yahoo’s New York based users. In an inter-
nal system at Yahoo (YAM+) such queries are performed in
rapid succession by advertisers when designing advertising
campaigns.

Answering such queries efficiently poses a challenge. On
the one hand, the number of users n is too large for an ef-
ficient linear scan, i.e., evaluating y explicitly. This is both
in terms of running time and space (disk) usage. On the
other hand, the values g; could be results of applying arbi-
trarily complex functions to records. Consider for example
the Flurry SDK (Yahoo) where users issue arbitrary queries
on their dataset. This means no indexing, intermediate pre-
aggregation, or sketching based solutions could be applied.

Fortunately, executing queries on a random sample of
records can provide good approximate answers. See the
work of Olken, Rotem and Hellerstein (Olken & Rotem,
1986; 1990; Olken, 1993; Hellerstein et al., 1997) for mo-
tivations and efficient algorithms for database sampling. It
is well known (and easy to show) that a uniform sample of
records provides a provably good solution to this problem.

1.1. Uniform Sampling

Let S C {1,2,...,n} be the set of sampled records and
Pr(i € S) = p; independently for all i. The Horvitz-
Thompson estimator for y is given by § = >, ¢ ¢i/pi. If
p; > ¢ > 0 the following statements hold true.

° E[j—y=0
e oy —y| <y\/1/(¢-card(q))
e Prf|j—y|>ey] < e—O(e¢-card(q))

Here, 0[] stands for the standard deviation and card(q) :=
> |gi|/ max |g;| is the numeric cardinality of a query.” The

Note that for binary, or ‘select’, queries the numeric cardi-
nality card(q) is equal to the cardinality of the set of selected
records.



Stratified Sampling Meets Machine Learning

first and second facts follow from direct expectation and
variance computations. The third follows from applying
Bernstein’s inequality to the sum of independent, mean
zero, random variables that make up §y — y.

Note that ¢ can be inversely proportional to card(q) which
means high cardinality queries can be well approximated
by very few uniform samples. Acharya, Gibbons and Poos-
ala (Acharya et al., 2000) showed that uniform sampling is
also the optimal strategy against adversarial queries. Later
it was shown by Liberty, Mitzenmacher, Thaler and Ull-
man (Liberty et al., 2014) that uniform sampling is also
space optimal in the information theoretic sense for any
compression mechanism (not limited to selecting records).
That means that no summary of a database can be more
accurate than uniform sampling in the worst case.

Nevertheless, in practice, queries and databases are not ad-
versarial. This gives some hope that a non-uniform sam-
ple could produce better results for practically encountered
datasets and query distributions. This motivated several in-
vestigations into this problem.

1.2. Prior Art

Sampling populations non-uniformly, such as Stratified
Sampling, is a standard technique in statistics. An ex-
ample is known as Neyman allocation® (Neyman, 1934;
Cochran, 1977) which selects records with probability in-
versely proportional to the size of the stratum they belong
to. Strata in this context is a mutually exclusive partitioning
of the records which mirrors the structure of future queries.
This structure is overly restrictive for our setting where the
queries are completely unrestricted.

Acharya et al. (Acharya et al., 2000) introduce congres-
sional sampling. This is a hybrid of uniform sampling and
Neyman allocation. The stratification is performed with re-
spect to the relations in the database. Later Chaudhuri, Das
and Narasayya (Chaudhuri et al., 2007) considered the no-
tion of a distribution over queries and assert that the query
log is a random sample from that distribution, an assump-
tion we later make as well. Both papers describe standard
stratified sampling on finest partitioning (or fundamental
regions) which often degenerate to single records in our
setting. Nevertheless, if the formulation of (Chaudhuri
et al., 2007) is taken to its logical conclusion, their result
resembles our ERM based approach. Their solution of the
optimization problem however does not carry over.

The work of Joshi and Jermaine (Joshi & Jermaine, 2008)
is closely related to ours. They generate a large number of
distributions by taking convex combinations of Neyman al-
locations of individual strata of single queries. The chosen
solution is the one that minimizes the observed variance on

3 Also known as Neyman optimal allocation.

the query log. They report favorable results but they sug-
gest an inefficient algorithm, offer no formal guaranties and
fail to recognize the critical importance of regularization.

Recent results (Agarwal et al., 2013; Laptev et al., 2012;
Agarwal et al., 2014) investigate a more interactive or dy-
namic database setting. These ideas combined with modern
data infrastructures lead to impressive practical results.

1.3. Our Contributions

In this paper we approach this problem in its fullest gener-
ality. We allow each record to be sampled with a different
probability. Then, we optimize these probabilities to min-
imize the expected error of estimating future queries. Our
only assumption is that past and future queries are drawn
independently from the same unknown distribution. This
embeds the stratification task into the PAC model.

1. We formalize stratified sampling as a special regres-
sion problem in the PAC model (Section 2).

2. We propose a simple and efficient one pass algorithm
for solving the regularized ERM problem (Section 3).

3. We report extensive experimental results on both syn-
thetic and real data that showcase the effectiveness of
our proposed solution (Section 4).

This gives the first solution to this problem which is simul-
taneously provable, practical, efficient and fully automated.

2. Sampling in the PAC Model

In the PAC model, one assumes that examples are drawn
i.i.d. from an unknown distribution (e.g. (Valiant, 1984;
Kearns & Vazirani, 1994)). Given a random collection
of such samples — a training set — the goal is to train a
model that is accurate in expectation for future examples
(over the unknown distribution). Our setting is very sim-
ilar. Let p; be the probability with which we pick record
i. Let ¢; denote the query ¢ evaluated for record ¢ and let
y = Y, q; be the correct exact answer for that query. Let
U = D _ics Qi/pi where i € S with probability p; be the
Horvitz-Thompson estimator for y. The value y is anal-
ogous to the prediction of our regressor at point q. The
model in this analogy is the vector of probabilities p.

A standard objective in regression problems is to mini-
mize the squared loss, L(7,y) = (§ — %) In our set-
ting, however, the prediction g is itself a random vari-
able. By taking the expectation over the random bits of
the sampling algorithm and by overloading the loss func-
tion L(p,q) := Y, ¢?(1/p; — 1), our goal is modified to
minimize

Ey[Es (7 —y)’] = Eq Z q;(1/pi—1) =E,L(p,q) .
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Optimizing for relative squared loss L(7,y) = (7/y — 1)?
is possible simply by dividing the loss by 2. For nota-
tional reasons the absolute squared loss is used for the al-
gorithm presentation and mathematical derivation. The ex-
perimental section uses the relative loss which turns out to
be preferred by most practitioners. The reader should keep
in mind that both absolute and relative squared losses fall
under the exact same formulation.

The absolute value loss L(g,y) = |§ — y| was considered
by (Chaudhuri et al., 2007). While it is a very reasonable
measure of loss it is problematic in the context of optimiza-
tion. First, there is no simple closed form expression for
its expectation over g. While this does not rule out gradi-
ent descent based methods it makes them much less effi-
cient. A more critical issue with setting L(7,y) = |7 — y|
is the fact that L(p, q) is, in fact, not convex in p. To ver-
ify, consider a dataset with only two records and a single
query (g1,q2) = (1,1). Setting (p1,p2) = (0.1,0.5) or
(p1,p2) = (0.5,0.1) gives E4[|y — y|] = 1.8. Setting
(p1,p2) = (0.3,0.3) yields E[|g — y|] = 1.96. This con-
tradicts the convexity of L with respect to p.

3. Empirical Risk Minimization

Empirical Risk Minimization (ERM) is a standard ap-
proach in machine learning in which the chosen model is
the minimizer of the empirical risk. The empirical risk
Remp(p) is defined as an average loss of the model over
the training set Q. Here () is a query log containing a ran-
dom collection of queries ¢ drawn independently from the
unknown query distribution.

Pemp = arg mpin Remp(p) = arg mm |Q\ Z L(p, q)

Notice that, unlike most machine learning problems, one
could trivially obtain zero loss by setting all sampling prob-
abilities to 1. This clearly gives very accurate “estimates”
but also, obviously, achieves no reduction in the database
size. In this paper we assume that retaining record ¢ in-
curs cost ¢; and constrain the sampling to a fixed budget B.
One can think of ¢;, for example, being the size of record
1 on disk and B being the total available storage. The in-
teresting scenario for sampling is when > ¢; > B. By
enforcing that > p;¢; < B the expected cost of the sample
fits the budget and the trivial solution is disallowed.

ERM is usually coupled with regularization because ag-
gressively minimizing the loss on the training set runs the
risk of overfitting. We introduce a regularization mecha-
nism by enforcing that p; > (¢ for some small threshold
0 < ¢ < B/),ci. When ¢ = 0 no regularization is ap-
plied. When ¢ = B/}, ¢; the regularization is so severe
that uniform sampling is the only feasible solution. This
type of regularization both insures that the variance is never

infinite and guarantees some accuracy for arbitrary queries
(see Section 1.1). To sum up, peymyp is the solution to the
following constrained optimization problem:

argmln |Q| ZZ% (1/ps — 1)

qeQ 1
Zpici < B and V1 pi € [<7 1]

Pemp

This optimization is computationally feasible because it
minimizes a convex function over a convex set. However, a
(nearly) closed form solution to this constrained optimiza-
tion problem is obtainable using the standard method of
Lagrange multipliers. The ERM solution, pe,y,,;,, minimizes

max[ LSS /p - 1) I

qeQ i
—Zﬁi(l—m)— _Zpici)]

where «;, B; and v are nonnegative. By complementary
slackness conditions, if { < p; < 1 then o; = 5; = 0.
Taking the derivative with respect to p; we get that

1 1
c

2
pi X = 101 quQ q;

This yields p; =
where z; = \/(l/ci|Q|)ZqEqu2 and cupl(z) =

max(¢, min(1, z)). The value for A is the maximal value
such that Y p;c; < B and can be computed by binary
search. This method for computing pemp is summarized
by Algorithm 1, which only makes a single pass over the
training data (in Line 5).

1P} (Az;) for some constant A

Algorithm 1 Train: regularized ERM algorithm
1: input: training queries @,
budget B, record costs c,
regularization factor 1 € [0, 1]

2
3:
4 C=n-(B/Y; Cz)
5
6
7

Vi oz = /Cz T ququ

: Binary search for X satisfying ) . ¢; cLipt(Az;) = B
: output: Vi p; = cLipt(Az;)

3.1. Model Generalization

The reader is reminded that we would have wanted to find
the minimizer p* of the real risk R(p). However, Algo-
rithm 1 find pe,,, which minimizes Re,,,(p), the empiri-
cal risk . Generalization, in this context, refers to the risk
associated with the empirical minimizer R(pey,p). Stan-
dard generalization results reason about R(pesmp) — R(p*)
as a function of the number of training examples and the
complexity of the learned concept.
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In terms of model complexity, a comprehensive study of the
VC-dimension of SQL queries was presented by Riondato
et al. (Riondato et al., 2011). For regression problems, such
as ours, Rademacher complexity (see for example (Bartlett
& Mendelson, 2003) and (Shalev-Shwartz & Ben-David,
2014)) is a more appropriate measure. Moreover, it is di-
rectly measurable on the training set which is of great prac-
tical importance.

Luckily, here, we can bound the generalization directly. Let

zf = /(1/c;)Eqq?. Notice that, if we replace z; by z} in
Algorithm 1 we obtain the optimal solution p*.

We will show that 2 and z; are 1+¢ approximations of one
another, and that & diminishes proportionally to /1/|Q].
This will yield that the values of A and A\*, p; and p}, and
finally that R(p) and R(p*) are also 1+O(e) multiplicative
approximations of one another which establishes our claim.

For a single record, the variable zf is a sum of i.i.d. ran-
dom variables. Moreover, z;? = E,2?. Using Hoeffding’s
inequality we can reason about the difference between the
two values.

Pr (|27 — 2

> EZ;Q] < 28—2|Q|52/skcw2(i) )

Definition: The skew of a record is defined as
skew (i) = (max ¢7)/(Eqq;) -
q

It captures the variability in the values a single record con-
tributes to different queries. Note that skew(4) is not di-
rectly observable. Nevertheless, skew () is usually a small
constant times the reciprocal probability of record 7 being
selected by a query.

Taking the union bound over all records, we get the mini-
mal value for € for which we succeed with probability 1—4.

€= O(mlaxskew(i) log(n/d)/1Q|)

From this point on, it is safe to assume z; /(1 +¢) < z; <
(1 + €)z] for all records ¢ simultaneously. To prove that
A* < (1 4 &)X assume by negation that A\* > (1 + ¢)\.
Because cLIp} is a monotone non-decreasing function we
have that

B = Y cicupt(\z) > Y cicupr(A(1+€)z))

> Zci cLipt(Az;) = B

The contradiction proves that A* < (1+¢)\. Using the fact
that cLip!(z) > cLip(ax)/a for all @ > 1 we observe

pi = cLPt(Az;) > cupt(Azi(1 +¢)?) /(1 +¢)?
> ot (N2)/(1+¢)? = pi /(1 +¢)?

Finally, a straightforward calculation shows that
Z(l/pi - 1)Eq%‘2

i
< D ((+e/pi — DBy

< (1439 (1/p; — DEeaf +3e ) Ega?

R(p) =

K2

< (L+O0(@)R(p") -

The last inequality requires that ), E,¢? is not much larger
than R(p*) = Y, (1/p; — 1) E,q¢;. This is a very reason-
able assumption. In fact, in most cases we expect ) _, quf
to be much smaller than Y, (1/p; — 1) E,q? because the
sampling probabilities tend to be rather small. This con-
cludes the proof of our generalization result

R(p) < R(p")(1 + O(maxskew(i)\/log(n/6)/|Ql)) -

4. Experiments

In the previous section we proved that if ERM is given a
sufficiently large number of training queries it will generate
sampling probabilities that are nearly optimal for answer-
ing future queries.

In this section we present an array of experimental results
using our algorithm. We compare it to uniform sampling
and stratified sampling. We also study the effects of varying
the number of training example and strength of the regular-
ization. This is done for both synthetic and real datasets.

Our experiments focus exclusively on the relative error de-
fined by L(7,y) = (§/y — 1)%. As a practical shortcut,
this is achievable without modifying Algorithm 1 at all.
The only modification needed is normalizing all training
queries such that y = 1 before executing Algorithm 1. The
reader can easily verify that this is mathematically identical
to minimizing the relative error. Algorithm 2 describes the
testing phase reported below.

Algorithm 2 Test: measure expected test error.

1: input: Test queries (), probability vector p
for ¢ € Q do
Yq Zi q;
vg =E(fe/yg — 1) = (1/y3) 325 4; (1/pi — 1)
end for
output: (1/|Q[) >, v

SANRATE

4.1. Details of Datasets

Cube Dataset The Cube Dataset uses synthetic records
and synthetic queries which allows us to dynamically gen-
erate queries and test the entire parameter space. A record
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is a 5-tuple {zx;1 < k < 5} of random real values, each
drawn uniformly at random from the interval [0, 1]. The
dataset contained 10000 records. A query {(tx,sx);1 <
k < 5} is a 5-tuple of pairs, each containing a random
threshold ¢ in [0, 1] (uniformly) and a randomly chosen
sign s, € {—1,1} with equal probability. We set ¢, = 1
iff Vk, sk (xk —t) > 0 and zero else. We also set all record
costs to ¢; = 1. The length of the tuples and the number
of record is arbitrary. Changing those yields qualitatively
similar results.

DBLP Dataset In this dataset we use a real database
from DBLP and synthetic queries. Records correspond to
2,101,151 academic papers from the DBLP public database
(database). From the publicly available DBLP database
XML file we selected all papers from the 1000 most pop-
ulous venues. A venue could be either a conference or a
journal. From each paper we extracted the title, the num-
ber of authors, and the publication date. From the titles we
extracted the 5000 most commonly occurring words (delet-
ing several typical stop-words such as “a”, “the” etc.).

Next 50,000 random queries were generated as follows.
Select one title word w uniformly at random from the set
of 5000 commonly occurring words. Select a year y uni-
formly at random from 1970, ..., 2015. Select a number k
of authors from 1, ..., 5. The query matches papers whose
titles contain w and one of the following four conditions
(1) the paper was published on or before y (2) the paper
was published after y (3) the number of authors is < k (4)
the number of authors is > k. Each condition is selected
with equal probability. A candidate query is rejected if it
was generated already or if it matches fewer than 100 pa-
pers. The 50,000 random queries were split into 40,000 for
training and 10,000 for testing.

YAM+ Dataset The YAM+ dataset was obtained from
an advertising system at Yahoo. Among its many func-
tions, YAM+ must efficiently estimate the reach of adver-
tising campaigns. Itis a real dataset with real queries issued
by campaign managers. In this task, each record contains
a single user’s advertising related actions. The result of
a query is the number of users, clicks or impressions that
meet some conditions.

In this task, record costs ¢; correspond to their volume on
disk which varies significantly between records. The bud-
get is the pre-specified allotted disk space available for stor-
ing the samples. Moreover, unlike the above two exam-
ples, the values g; often represent the number of matching
events for a given user. These are not binary but instead
vary between 1 and 10,000. To set up our experiment, 1600
contracts (campaigns) were evaluated on 60 million users,
yielding 1.6 billion nonzero values of g;.

Dataset Cube | DBLP | YAM+
Sampling Rate 0.1 0.01 0.01
Uniform Sampling 0.664 | 0.229 | 0.104
Neyman Allocation 0.643 | 0.640 | 0.286
Regularized Neyman 0.582 | 0.228 | 0.102
ERM-n, small training set | 0.637 | 0.222 | 0.096
ERM-p, small training set | 0.623 | 0.213 | 0.092
ERM-n, large training set | 0.233 | 0.182 | 0.064
ERM-p, large training set | 0.233 | 0.179 | 0.059

Figure 1. Average expected relative squared errors on test set for
two standard baselines (uniform sampling and Neyman alloca-
tion); one novel baseline (Regularized Neyman); and ERM us-
ing two regularization methods. Note that Neyman allocation is
worse than uniform sampling for two of the three datasets, and
that “Regularized Neyman” works better than either of them on
all three datasets. The best result for each dataset is shown in bold
text. In all cases it is achieved by regularized ERM. Also, more
training data reduces the testing error, which is to be expected.
Surprisingly, a heuristic variant of the regularization (Section 4.4)
slightly outperforms the one analyzed in the paper.

The queries were subdivided to training and testing sets
each containing 800 queries. All training queries were
chronologically issued before any of the testing queries.
The training and testing sets each contained roughly 60
queries that matched fewer than 1000 users. These were
discarded since they are considered by YAM+ users as too
small to be of any interest. As such, approximating them
well is unnecessary.

4.2. Baseline Methods

We used three algorithms to establish baselines for judging
the performance of regularized ERM. Both of the first two
algorithms, uniform sampling and Neyman allocation, are
well known and widely used. The third algorithm (see Sec-
tion 4.5) was a novel hybrid of uniform sampling and Ney-
man allocation that was inspired by our best-performing
version of regularized ERM.

Standard Baseline Methods The most important base-
line method is uniform random sampling. It is widely used
by practitioners and has been proved optimal for adversar-
ial queries. Moreover, as shown in Section 1, it is theoreti-
cally well justified.

The second most important (and well known) baseline is
Stratified Sampling, specifically Neyman allocation (also
known as Neyman optimal allocation). Stratified Sampling
as a whole requires the input records to be partitioned into
disjoint sets called strata. In the most basic setting, the op-
timal sampling scheme divides the budget equally between
the strata and then uniformly samples within each stratum.
This causes the sampling probability of a given record to
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Cube Dataset

DBLP Dataset

YAM+ Dataset
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Figure 2. The three plots correspond to the three datasets. The y-axis is the average expected normalized squared error on the testing
queries (lower values are better). The different curves in each plot correspond to different sizes of training sets (see the legend). The
black horizontal line corresponds to uniform sampling using a similar sampling rate. The value of 7 (strength of regularization) varies
along the x-axis. The plots make clear that a) training on more examples reduces the future expected error b) more regularization is
needed for smaller training sets and c) that overfitting is a real concern.

be inversely proportional to the cardinality of its stratum.
Informally, this works well when future queries correlate
with the strata and therefore have plenty of matching sam-
ples.

Strata for Neyman Allocation The difficulty in applying
Neyman allocation to a given data system lies in designing
the strata. This task incurs a large overhead for developing
insights about the database and queries. Our experiment
used the most reasonable strata we could come up with.
It turned out that the only dataset where Neyman alloca-
tion beat uniform random sampling was the synthetic Cube
Dataset, whose structure we understood completely (since
we designed it). This, however, does not preclude the pos-
sibility that better strata would have produced better results
and possibly have improved on uniform random sampling
for the other datasets as well.

Strata for Cube Data Set For the Cube Dataset, we hap-
pened to know that good coverage of the corners of the
cube is important. We therefore carved out the 32 corners
of the cube and assigned them to a separate “corners” stra-
tum as follows. A point was assigned to this stratum if
Vk € {1...5}, min(xg,1 — x) < C where the threshold
C = (1/160)(*/5) ~ 0.362 was chosen so that the total
volume of the corners stratum was 20 percent of the vol-
ume of the cube. This corners stratum was then allocated
50 percent of the sampling scheme’s space budget. This
caused the sampling probabilities of points in the corners
stratum to be 4 times larger than the probabilities of other
points.

Strata for DBLP Data Set For the DBLP dataset, we
experimented with three different stratifications that could
plausibly correlate with queries: 1) by paper venue, 2) by
number of authors, and 3) by year. Stratification by year
turned out to work best, with number of authors a fairly
close second.

Strata for YAM+ Data Set For the YAM+ dataset users
were put into separate partitions by the type of device they
use most often (smartphone, laptop, tablet etc.) and avail-
able ad-formats on these devices. This creates 71 strata.
YAM+ supports Yahoo ads across many devices and ad-
formats and advertisers often choose one or a few formats
for their campaigns. Therefore, this partition respects the
structure of most queries. Other reasonable partitions we
experimented with did not perform as well. For example,
partition by user age and/or gender would have been rea-
sonable but it correlates poorly with the kind of queries is-
sued to the system.

Results for Baseline Methods Figure 1 tabulates the
baseline results against which the accuracy of regularized
ERM is judged. The sampling rate is B/ > ¢;. The rest of
the rows contain the quantity (1/|Ql) Y°, ¢, v, the output
of Algorithm 2. A comparison of the two standard base-
line methods shows that uniform random sampling worked
better than Neyman allocation for both of the datasets that
used real records and whose structure was therefore com-
plex and somewhat obscure.

4.3. Main Experimental Results

Figure 2 shows the results of applying Algorithm 1 to the
three above datasets. There is one plot per dataset. In all
three plots the y-axis is the average expected normalized
squared error as measured on the testing queries; lower
values are better. The different curves in each plot in Fig-
ure 2 report the results for a different size of training set.
The worst results (highest curve) correspond to the small-
est training set. The best results (lowest curve) are for the
largest training set. There is also a black line across the
middle of the plot showing the performance of uniform ran-
dom sampling at the same average sampling rate (budget).
More training data yields better generalization (and clearly
does not affect uniform sampling). This confirms our hy-
pothesis that the right model is learned.
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Figure 3. These three plots show the expected error of each test query. Clearly, for all three datasets, error is generally a decreasing
function of the numeric cardinality of the queries. The advantage of ERM over uniform random sampling lies primarily at the more

difficult low cardinality end of the spectrum.

The x-axis in Figure 2 varies with the value of the parame-
ter 7 which controls the strength of regularization. Moving
from left to right means that stronger regularization is being
applied. When the smallest training set is used (top curve),
ERM only beats uniform sampling when very strong reg-
ularization is applied (towards the right side of the plot).
However, the larger the training set becomes, the less reg-
ularization is needed. This effect is frequently observed in
many machine learning tasks where smaller training sets
require stronger regularization to prevent overfitting.

4.4. Mixture Regularization

In Algorithm 1, the amount of regularization is determined
by a probability floor whose height is controlled by the user
parameter 1. We have also experimented with a different
regularization that seems to work slightly better. In this
method, unregularized sampling probabilities p are gen-
erated by running Algorithm 1 with = 0. Then, reg-
ularized probabilities are computed via the formula p’ =
(1 —p)p + pu where uw = B/(>", ¢;) is the uniform sam-
pling rate that would hit the space budget. Note that p’ is a
convex combinations of two feasible solutions to our opti-
mization problem and is therefore also a feasible solution.
Test error as a function of training set size and the value of
p are almost identical to those achieved by n-regularization
(Figure 2). The only difference is that the minimum test-
ing errors achieved by mixture regularization are slightly
lower. Some of these minima are tabulated in Figure 1.
This behavior could be specific to the data used but could
also apply more generally.

4.5. Neyman with Mixture Regularization

The Mixture Regularization method described in Sec-
tion 4.4 can be applied to any probability vector, including
a vector generated by Neyman allocation. The resulting
probability vector is a convex combination of a uniform
vector and a Neyman vector, with the fraction of uniform
controlled by a parameter p € [0, 1]. This idea is similar in
spirit to Congressional Sampling (Acharya et al., 2000).

The estimation accuracy of Neyman with Mixture Regu-
larization is tabulated in the “Regularized Neyman” row of
Figure 1. Each number was measured using the best value
of p for the particular dataset (tested in 0.01 increments).
We note that this hybrid method worked better than either
uniform sampling or standard Neyman allocation.

4.6. Accuracy as a Function of Query Size

Our main experimental results show that (with appropriate
regularization) ERM can work better overall than uniform
random sampling. However, there is no free lunch. The
method intuitively works by redistributing the overall sup-
ply of sampling probability, increasing the probability of
records involved in hard queries by taking it away from
records that are only involved in easy queries. This de-
creases the error of the system on the hard queries while
increasing its error on the easy queries. This tradeoff is
acceptable because easy queries initially exhibit minuscule
error rates and remain well below an acceptable error rate
even if increased.

We illustrate this phenomenon using scatter plots that have
a separate plotted point for each test query showing its ex-
pected error as a function of its numeric cardinality. As
discussed in Section 1.1, the numeric cardinality is a good
measure of how hard it is to approximate a query result well
using a downsampled database.

These scatter plots appear in Figure 3. There is one plot
for each of the three datasets. Also, within each plot, each
query is plotted with two points; a blue one showing its er-
ror with uniform sampling, and a red one showing its error
with regularized ERM sampling.

For high cardinality (easy) queries ERM typically exhibits
more error than uniform sampling. For example, the ex-
treme cardinality queries for the Cube dataset experience a
0.001 error rate with uniform random sampling. With our
solution the error increases to 0.005. This is a five fold
increase but still well below an average 0.25 error in this
setting. For low cardinality (hard) queries, ERM typically
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achieves less error than uniform sampling. However, it
doesn’t exhibit lower error on all of the hard queries. That
is because error is measured on testing queries that were
not seen during training. Predicting the future isn’t easy.

YAM+ Dataset
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Figure 4. Left: These smoothed histograms show the variability
of results caused by random sampling decisions. Clearly, the dis-
tribution of outcomes for regularized ERM is preferable to that
of uniform random sampling. Right: ERM with mixture regular-
ization versus uniform random sampling at various effective sam-
pling rates (B/ Y ¢;). The gains might appear unimpressive in
the log-log scale plot but are, in fact, 40%-50% throughout which
is significant.

4.7. Variability Caused by Sampling Choices

The quantity ﬁ > 1€Q vg output by Algorithm 2 is the av-
erage expected normalized squared error on the queries of
the testing set. While this expected test error is minimized
by the algorithm, the actual test error is a random variable
that depends on the random bits of the sampling algorithm.
Therefore, for any specific sampling, the test error could be
either higher or lower than its expected value. The same
thing is true for uniform random sampling. Given this ad-
ditional source of variability, it is possible that a concrete
sample obtained using ERM could perform worse than a
concrete sample obtained by uniform sampling, even if the
expected error of ERM is better.

To study the variability caused by sampling randomness,
we first computed two probability vectors, p. and p, for
the YAM+ dataset. The former was the output of ERM with
mixture regularization with p = 0.71 (its best value for this
dataset). The latter was a uniform probability vector with
the same effective sampling rate (0.01). These were kept
fixed throughout the experiment.

Next the following experiment was repeated 3000 times.
In each trial a random vector, , of n random numbers was
created. Each of the values r; was chosen uniformly at
random from [0, 1].

The two concrete samples specified by these values are
1 € Seifpe; <ryandi € Sy, if p, ; < r;. Finally we mea-
sured the average normalized squared error over the testing
queries for the concrete samples S, and S,,. The reason for
this construction is so that the two algorithms use the exact
same random bits.

Smoothed histograms of these measurements for regular-
ized ERM and for uniform sampling appear in Figure 4.
For esthetic reasons, these histograms were smoothed by
convolving the discrete data points with a narrow gaussian
(o = 0.006). They approximate the true distribution of
concrete outcomes.

The two distributions overlap. With probability 7.2%, a
specific ERM outcome was actually worse than the out-
come of uniform sampling with the same vector of random
numbers. Even so, from Figure 4 we clearly see the distri-
bution for regularized ERM shifted to the left. This corre-
sponds to the reduced expected loss but also shows that the
mode of the distribution is lower.

Moreover, the ERM outcomes are more sharply concen-
trated around their mean, exhibiting standard deviation of
0.049 versus 0.062 using uniform sampling. This is de-
spite the fact that the right tail of the ERM distribution
was slightly worse, with 17/3000 outcomes in the interval
[0.4,0.6] versus 11/3000 for uniform. The increased con-
centration is surprising because usually reducing expected
loss comes at the expense of increasing its variance. This
should serve as additional motivation for using the ERM
solution.

5. Concluding discussion

Using three datasets, we demonstrate that our machine
learning based sampling and estimation scheme provides
a useful level of generalization from past queries to fu-
ture queries. That is, the estimation accuracy on future
queries is better than it would have been had we used uni-
form or stratified sampling. Moreover, it is a disciplined
approach that does not require any manual tuning or data
insights such as needed for using Stratified Sampling (cre-
ating strata). Since we believe most systems of this nature
already store a historical query log, this method should be
widely applicable.

The ideas presented extend far beyond the squared loss and
the specific ERM algorithm analyzed. Machine learning
theory allows us to apply this framework to any convex loss
function using gradient descent based algorithms (Hazan &
Kale, 2014). One interesting function to minimize is the
deviation indicator function L(g,y) = 1if | — y| > ey
and zero else. This choice does not yield a closed form so-
lution for L(p, ¢) but using Bernstein’s inequality yields a
tight bound that turns out to be convex in p. Online convex
optimization (Zinkevich, 2003) could give provably low
regret results for any arbitrary sequence of queries. This
avoids the i.i.d. assumption and could be especially appeal-
ing in situations where the query distribution is expected to
change over time.
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